IMPORTANCE OF BOVINE COLOSTRUM FOR HUMAN HEALTH & NUTRITION

0
1247

IMPORTANCE OF BOVINE COLOSTRUM FOR HUMAN HEALTH & NUTRITION

 

COMPILED & EDITED BY-DR. BSP VERMA, DIETITIAN & NUTRITIONISTS,TATA MAIN HOSPITAL,JAMSHEDPUR

Colostrum is the earliest milk produced from the mammary glands for the first few days after giving birth and is unique in its composition of essential nutrients, immune factors, and oligosaccharides that benefit the newborn . In the case of cows, bovine colostrum is produced immediately after calving and quickly wanes to mature milk , which lacks the high level of beneficial nutrients found in bovine colostrum. There are several factors affecting the composition and physical properties of colostrum such as individuality, breed, parity, pre-partum nutrition, length of the dry period of cows, and time post-partum . Generally, colostrum has more fat, protein, peptides, non-protein nitrogen, ash, vitamins and minerals, hormones, growth factors, cytokines, nucleotides, and less lactose compared to mature milk content. The concentration of these compounds decreases rapidly in the first 3 days of lactation with the exception of lactose content . While the consumption of human colostrum by infants has long been recognized as a source of critical bioactive proteins for infants , the consumption of animal colostrum is also practiced in many locations beyond the neonatal period . In these cultures and regions, colostrum has long been consumed as a health food or for medicinal purposes, with cultural practices centered on the belief that animal colostrum was an important component of the development of healthy children and supportive of healthy or infirmed adults . While these cultural or regional beliefs are associated with this practice, the abundance of well-characterized bioactive compounds and selective prebiotic components of this food may further support this cultural knowledge from a scientific perspective. Historically, liquid fresh colostrum was primarily consumed, but pasteurized colostrum is also commercially available as a standalone drink, though production remains small . In European cultures and elsewhere such as India, and Scandinavia, colostrum is also used in the production of cheeses and other traditional foods . More recently, dried colostrum is collected and processed as a dietary supplement, which is widely consumed for perceived health benefits (10). In the US and EU, colostrum supplements are marketed for a variety of health benefits, including boosting immunity and gastrointestinal (GI) health. While attractive in concept, there are limitations to this use of dried colostrum, which are typically in a pill or tablet form, given the limited amount of colostrum consumed relative to clinically studied consumption rates. Still, colostrum is a complex biological fluid and contains significant components which are natural anti-microbial factors for stimulating the maturation of calf immunity . In addition, the development and function of the GI tract are shaped by colostrum intake , and it also affects the metabolic and endocrine systems as well as the nutritional state of neonatal calves . Colostrum has muscular-skeletal repair and growth potential in addition to its immune support function and many benefits to health because of its content of bioactive proteins . Further, some evidence suggests that the cytokines, immunoglobulins, growth factors, antimicrobial compounds, and maternal immune cells are transferred to the newborn with the feeding of colostrum to support neonatal immunity . Bovine colostrum has even been purported to treat viral and bacterial infections as a nutraceutical . Together, the existing evidence in support of colostrum suggests that there is potential for colostrum to have a significant role in supporting human health as well. While there are other studies which have begun to look at colostrum from other animals , this review explores the current knowledge on the bovine colostrum in the context of nutrition, its bioactive components, and its potential for human health and nutrition. Mammals provide antibodies, immunocytes, and humoral constituents to their newborns before birth or shortly after birth. Until a mammal newborn develops its pathogen acknowledgement and removal systems, this “borrowed immunity”(passive immunization) protects the newborn against ecological pathogens. The colostrum, the first milk after birth, provides immunoglobulins in animals neonates and enhances their immunity. The major effect of bovine colostrum intake on the growth of calves’ immune system has led to the use of bovine colostrum-based products in humans (Natalia Główka et al., 2020). In the human being, the newborn obtains immunoglobulins from the mother by placental transport in the weeks before parturition (Struff, W. G., & Sprotte, G,.2007). Thus, colostrum and human milk are a complete diet for neonates. In ruminants, the progeny’s immunity is gained through colostrum and plays a dynamic role in mammalian host defence. In the ruminant’s colostrum, IgG immunoglobins are high, whereas, in human milk, IgA is high. In both, mammary receptors help in the secretion of immunoglobulins. Both colostrum and dairy also have neutrophils and macrophages, which secrete cytokines, lactoferrin, defensins, and cathelicidins, which act as antimicrobials peptides (Stelwagen K et al., 2009). The amount of colostrum is about 50 ml, which is sufficient to fill neonates’ small stomach. It is yellow or orange due to the high quantity of carotene and called ‘Yellow Gold”. It helps in the expulsion of meconium and decreases bilirubin’s initial level, thus controlling neonatal jaundice. Colostrum satisfies neonates’ appetite and therefore calms the satiety centre, helping in deep sleep in neonates. BC encourages tissue growth and the digestive tract’s maturation and immune function in neonatal animals and humans. BC is considered safe and well tolerant, as lactose intolerance is relatively less compared to milk. BC provides growth and immunological benefits to the calf in its first days of life as it has more protein than standard milk (13.0% vs 3,3%). Immunological benefits have also been recognized in adults, with consumption leading to reduced damage to the gastrointestinal tract induced by high doses of non-steroidal anti-inflammatory drugs. Colostrum supplementation is useful to reduce subjective upper respiratory symptoms in athletes (Bagwe, S. et al., 2015). The colostrum intake supports the start of anabolic processes in several tissues, stimulating postnatal body growth and organ development. (H.M.Hammon1 et al., 2020) A recent literature review is presented about the immune factors in colostrum and its benefits.

Colostrum is a milky fluid that’s released by mammals that have recently given birth before breast milk production begins.It’s an important source of nutrients that promotes growth and fights disease in infants, but it can also be consumed during other phases of life — typically in supplement form.Even though all mammals produce colostrum, supplements are usually made from the colostrum of cows. This supplement is known as bovine colostrum.

Bovine colostrum is similar to human colostrum — rich in vitamins, minerals, fats, carbohydrates, disease-fighting proteins, growth hormones, and digestive enzymes .Bovine colostrum supplements have become popular in recent years, as they may promote immunity, fight infection, and improve gut health .

For these supplements colostrum from cows is pasteurized and dried into pills or into powders that can be mixed with liquids. Bovine colostrum typically has a light yellow color and a subtle taste and smell that resembles buttermilk.

Bovine colostrum

Common Name(s)

Bovine colostrum is also known as cow milk colostrum, bovine colostrum immune milk, lactobin, LC2N, BCC (bovine colostrum concentrate), hyperimmune milk, early milk, and lactoferrin.

What is Bovine colostrum?

Colostrum is the fluid produced by mammary glands during the first 2 to 4 days after birth, before milk is produced. It is a rich natural source of nutrients, antibodies, and growth factors for the newborn. Bovine colostrum is collected from dairy cows shortly after calving.

What is it used for?

Traditional/Ethnobotanical Uses

The use of colostrum for both medicinal and spiritual purposes has been noted in the traditional Ayurvedic medical system and among the ancient Hindu rishis (spiritual leaders) of India. At the turn of the 20th century, the use of colostrum was advocated to protect infants against both human and bovine infections. Prior to the advent of sulfa drugs and other antibiotics, colostrum was used to boost defense against immune diseases. Albert Sabin isolated antipolio antibodies in bovine colostrum in the 1950s and the first experiments with hyperimmune colostrum were conducted in the 1960s.

General Uses

Bovine colostrum may have a role in the management of HIV-associated diarrhea. Evidence is promising but weak for use in boosting the immune system, preventing infection, and in enhancing performance among athletes.

What is the recommended dosage?

Commercial bovine colostrum products are difficult to standardize because antibody content may vary widely. Dosages of up to 60 mg/day for as long as 9 weeks have been used in clinical trials.

Highly Nutritious

Bovine colostrum is extremely nutritious and contains more nutrients than regular milk.In particular, it’s higher in protein, fat, carbs, magnesium, B vitamins, and vitamins A, C, and E than cow’s milk .

While colostrum is rich in macronutrients, vitamins, and minerals, its claimed health benefits are mostly linked to specific protein compounds, which include:

  • Lactoferrin. Lactoferrin is a protein involved in your body’s immune response to infections, including those caused by bacteria and viruses .
  • Growth factors. Growth factors are hormones that stimulate growth. Bovine colostrum is especially high in two protein-based hormones, insulin-like growth factors 1 and 2, or IGF-1 and IGF-2 .
  • Antibodies. Antibodies are proteins, also known as immunoglobulins, used by your immune system to fight bacteria and viruses. Bovine colostrum is rich in the antibodies IgA, IgG, and IgM .

Since bovine colostrum is loaded with nutrients that fight disease and promote growth, it may be able to boost immunity, treat infections, and offer more related benefits in humans throughout life.

Bovine Colostrum Composition

Milk composition changes dramatically over the course of lactation and bovine colostrum is compositionally and nutritionally distinct from mature milK.In contrast to mature milk, colostrum has a much higher protein and moderately higher fat content, with substantially less lactose.This reflects the needs of the developing calf, where the passive transfer of immunoglobulins is critical for health .

TABLE 1

Table 1. Bovine colostrum and mature milk composition.

Further, as the volume of milk production increases over lactation, there is a concomitant decrease in the mineral content of milk .Thus, colostrum represents a relatively high-protein and lower-carbohydrate solution that can be processed similarly to mature milk in order to reduce fat content and shape the caloric density for desired nutritional applications. Further, milk proteins are considered a “complete protein” source owing to their amino acid profile, and high protein digestibility, especially of whey proteins though colostrum contains higher concentrations of immunoglobulins which are less digestible .

While current dietary recommendations of protein intake for a healthy adult with minimal physical activity are 0.8 g per kg per day ,a growing body of evidence suggests that optimal intake may be higher [1.2–1.6 g per kg per day; and this intake should be balanced across meals to promote skeletal muscle protein synthesis . Especially in elderly populations, optimal protein intake to reduce skeletal muscle loss associated with aging is often not achieved, which is further compounded by diminished proteolytic activity associated with aging . Thus, colostrum may offer an attractive digestible, complete protein source that can be integrated into a calorically-appropriate diet. In addition to macronutrients, bovine colostrum includes vitamins, minerals, and a broad assortment of protein-derived bioactives which may offer additive benefits to its macronutrient profile.

Main Factors Affecting Colostrum Composition

The composition and quality of the bovine colostrum are highly variable due to genetic and environmental factors including individuality, breed, parity, the timing of milking, diseases, pre-partum nutrition, season, length of the dry period of cows, and time post-partum .

Individual Variation Among Animals

Bovine colostrum quality is different among individuals and between genetic backgrounds .For instance, the concentration of immunoglobulin G (IgG) in bovine colostrum and the volume of first milking vary among individual cattle .The Jersey cows produce the highest (66.5 g/L) whereas Friesian-Holsteins produce the lowest (41.2 g/L) concentrations of IgG among breeds studied .In the case of cow parity, first-calf heifers produce a lower yield of colostrum and lower IgG concentration in colostrum than those cows in their second or greater lactation. The quality of bovine colostrum increases with parity after the second calving, and older cows generally produce the best quality colostrum .

Another individual factor is the disease which influences bovine colostrum quality. For instance, mastitis is an inflammation of the mammary gland of the bovine that has negative consequences including low quality of the colostrum. The volume and concentration of bovine colostrum IgG are lower in cows with infected mammary glands than cows with uninfected glands .The age of cows also affects the quality of colostrum. Some studies’ data are in general agreement that older cows have a higher quality of colostrum than younger cows .The association between older age and good quality of colostrum is thought to be a result of increased pathogen exposure, improved immunity, and body condition score .

Environmental Factors

The timing of the bovine colostrum milking after parturition has significant effects on concentrations of IgG in the bovine colostrum. Early or immediate colostrum milking will significantly increase colostrum quality. Moore et al. .reported that colostrum collected 6, 10, and 14 h after parturition has lower IgG concentration than colostrum collected 2 h after parturition. Another study also showed that bovine colostrum quality is highest immediately after parturition of North American herds, but it decreased when milking was delayed .Bovine colostrum quality is also affected by the calving season. Cows calving during the summer months have lower quality colostrum than those calving in the autumn months .The bovine colostrum fat percentage is at 24 and 48 h after birth is affected by the calving season. Animals born in autumn-winter seasons have a higher colostrum fat percentage than those in calving in spring-summer seasons. One cause may be differences in metabolism, feed, and water consumption in different seasons .

READ MORE :  भारतीय डेयरी-पशुओं की कम उत्पादकता: चुनौतियाँ और निवारण रणनीतियाँ

The dry period length is an important period for cows which lasts ~6–8 weeks. This period is needed for the renewal of milk secretion tissue, preparation for lactation, and completion of fetus development .Colostrum starts to be secreted in the last 15–20 days of the dry period and its composition changes continued until parturition .Le Cozler et al.also reported that there is a positive coefficient of correlation (R2 = 0.22; P < 0.01) between IgG concentration and dry period length .

Fats

Colostrum contains a higher percentage of fat than mature milk and the composition of these fats is also distinct. O’Callaghan et al. examined the composition of colostrum and the changes observed during the transition to mature milk, reporting that colostrum is higher in palmitic, palmitoleic, and myristic acids, relative to mature milk .While these fat profiles are well-suited to the developing calf ,the profiles of these fats and the higher concentration of saturated fat have been associated with long-term negative health outcomes, though there is some disagreement within the literature as to the level of support for the role of dairy fats in cardiovascular disease ,There is evidence that these fatty acids play a role as signaling molecules and, as dietary fatty acids, contribute to the regulation of lipogenesis in the liver .Further, many vitamins found in milk are fat soluble (e.g., vitamin A, D) and removal of these fats also reduces the concentration of these vitamins in colostrum.

It is of relevance to consumers that the advances in dairy technology which enable efficient separation of fats from the aqueous fraction of milk (that is, the fraction which contains proteins, carbohydrates, minerals, and some vitamins) enable the reduction or removal of these fats from colostrum, ahead of downstream processing, making the potential for a low-fat or fat-free colostrum product possible. However, some have speculated that the tradeoff between dairy fats and the removal of bioactive found in the fat fraction of dairy foods may not always be a net benefit .To resolve this conflict in the literature, it is clear that well-controlled clinical studies investigating the relationship between the dietary fats found in colostrum and health are needed.

Vitamins/Minerals Found in Colostrum

Bovine colostrum contains also high levels of fat-soluble and water-soluble vitamins that are critical to human health.Notably, vitamin A is reported to be found at high concentrations in colostrum in a variety of forms including retinol, retinal, retinoic acid, retinyl esters and as provitamin A carotenoids .Vitamin E, in the form of tocopherols and tocotrienols (~ mean 77.17 mg/kg) are found in low density lipoproteins in colostrum .Vitamin K is also found in greater concentration in colostrum compared to mature milk in two forms, phylloquinone, and menaquinones .Vitamin D is found in higher concentrations in colostrum than mature milk .Vitamin D has important roles in immune activities and promotes the uptake of calcium and phosphorus in the small intestine .It has two major forms as cholecalciferol (vitamin D3) and ergocalciferol (vitamin D2) and their concentration decreases from 1.2 to 0.36 IU. g−1 during the first 5 days post-partum .Vitamin C and the B vitamins are also found in the water-soluble fraction of colostrum at a higher concentration compared to mature milk and together provide a natural source of essential vitamins critical to human health.

Bovine colostrum and mature milk are known to be good sources of several minerals especially calcium and phosphorus .Recent studies revealed that the mean concentrations of several important minerals in colostrum are significantly higher than in mature bovine milk. Calcium is necessary for the maintenance of calf development and their healthy bones and teeth. Phosphorus is also crucial for the metabolic rate and physiological functions including development of skeletal tissue, energy utilization, protein synthesis, and transport of fatty acids .Magnesium is present in a relatively large amount, along with zinc and selenium in bovine colostrum .

Bioactive Proteins

Immunoglobulins (Igs)

Immunoglobulins (Igs) are complex proteins, known as antibodies, that make up a significant part of the total protein in bovine colostrum. The immunoglobulins in bovine colostrum mainly come in 3 different varieties called isotypes including IgG (IgG1 and IgG2), IgA, IgM. IgG is the dominant immunoglobulin in bovine colostrum, which makes up 85–90% of the total immunoglobulin content. IgG1 represents 80–90% of the total IgG content in bovine colostrum, followed by IgM, IgA, and IgG2 .These immunoglobulins are essential in the survival of the calves and their immune systems and they neutralize enteric pathogens such as bacteria, microbes, and viruses. Using bovine colostrum as a source of antibody preparations to support bovine and human health is an important research subject that has been studied for decades .

One of the key differences between mature milk and colostrum is the high concentration of IgG found in colostrum, which reaches up to 50–100 mg/mL in the first days after birth .Bovine serum IgG1 and IgG2 concentration decrease before parturition, they are transferred from the blood into the colostrum. In fact, nearly all IgG in colostrum is transferred from bovine serum into the colostrum and milk .

The high concentration of IgG is necessary for the survival of calves, which is strongly dependent on the transfer of IgG from bovine colostrum to calves to provide passive immunity as cows cannot transfer IgG through the placenta .Indeed, if calves do not receive colostrum immediately after birth, they are prone to infection and will suffer from a higher risk of morbidity and mortality .

Lactoferrin

Lactoferrin is a cationic, iron-binding glycoprotein present as about 0.80 mg/mL in bovine colostrum .It has multiple functions including antibacterial, antifungal, antiviral, antiparasitic, antitumor and immunomodulatory (anti-inflammatory) effects ,and is the major protein in the milk serum of all mammals .Bovine colostrum-derived lactoferrin has antimicrobial activity by inhibiting the growth of disease-causing protozoa, yeasts, bacteria, and viruses, and lactoferrin may prevent the attachment of pathogens to epithelial cells and help maintain intestinal permeability and stability .Moreover, there are some studies showing that bovine colostrum-derived lactoferrin can increase the proliferation of cells involved in the bone formation such as osteoblasts, and the release of some growth factors from osteoblasts .

Furthermore, it is known to play a role in iron uptake in the intestine and activation of phagocytes and immune responses. Receptors for lactoferrin are expressed on intestinal tissue, monocytes, macrophages, neutrophils, lymphocytes, platelets, and on some bacteria .Bovine lactoferrin supplements are thought to support the immune system and influence immune cell activity potentially via these antioxidant, antibacterial, and antiviral properties .The greatest concentration of this protein is found in colostrum, which has been determined to be four times greater than mature milk .

Lactoperoxidase

Lactoperoxidase is a major antibacterial enzyme found in bovine colostrum, it is a basic glycoprotein that catalyzes the oxidation of thiocyanate and generates intermediate compounds with antimicrobial activities .The concentration of lactoperoxidase is 11–45 mg/L in bovine colostrum and 13–30 mg/L in mature bovine milk .Its concentration in bovine colostrum is low initially, but it reaches the maximum level within 3–5 days after parturition. Lactoperoxidase catalase activity is also higher in bovine colostrum than in mature milk .

Lactoperoxidase activity produces toxic oxidation products that inhibit bacterial metabolism by oxidation of essential sulfhydryl groups in proteins. This system is toxic to some gram-positive and negative bacteria like Pseudomonas aeruginosa, Salmonella typhimurium, Listeria monocytogenes, Streptococcus mutans, and Staphylococcus aureus .The lactoperoxidase system also inactivates the poliovirus, vaccinia virus, and HIV .

Oligosaccharides

Bovine colostrum is a rich source of complex and highly selective oligosaccharides and glycans. The concentration of oligosaccharides in colostrum is 0.7–1.2 mg/mL and the majority of these structures are acidic oligosaccharides which are lower in mature bovine milk .Forty distinct oligosaccharides compositions have been detected in bovine colostrum so far .The total colostrum oligosaccharides differ between cows because of their genetic variability .Predominant oligosaccharides in bovine colostrum are 3′ sialyllactose (3′SL), 6′ sialyllactose (6′SL), 6′ siayllactosamine (6′SLN) and disialyllactose (DSL). 3’SL is 70% of total oligosaccharide content in bovine colostrum .3′SL, 6′SL, and 6′SLN levels in colostrum were highest following parturition and decreased by 48 h post-partum, while neutral oligosaccharide level increased .Breed specific differences have also been identified in oligosaccharide content. Concentrations of 3′SL, 6′SL, 6′SLN and DSL were found as 867, 136, 220, and 283 μg/mL, respectively, in colostrum from Jersey cows, while these concentrations were 681, 243, 239, and 201 μg/mL, respectively, in Holstein colostrum after parturition .Both free oligosaccharides (bovine milk oligosaccharides, BMOs) and complex, conjugated N-glycans represent the majority of the prebiotic components of bovine colostrum .

While there are many distinctions between BMOs and human milk oligosaccharides (HMOs), there has been significant interest in utilizing milk and colostrum as a source of BMOs for human nutrition and health to modulate the GI microbiome .In contrast to HMOs, BMOs are predominantly sialylated (i.e., acidic) oligosaccharides, with a low propensity for fucosylation and a lower structural diversity .Recent advancements in enzymatic glycosylation have provided opportunities for the structural enhancement of BMOs to alter their structure to resemble HMOs .Several complexities in milk processing have thus far limited the ability of BMOs to be separated from lactose found at high concentrations in milk ,though solutions have begun to emerge ,which complicates their utility for human nutrition and health. Further, though pilot experiments with purified BMOs in adults have not yet demonstrated generalizable changes to GI microbial populations ,future work in infants may be more promising as recent in vitro experiments with BMOs are more promising .

Complex and hybrid N-glycans found in bovine mature milk and colostrum may also provide a source of prebiotic glycans that can be selectively utilized in a fashion similar to HMOs/BMOs .Further, the conjugation of these N-glycans to milk proteins enable different strategies for their recovery. Protein separation from lactose and subsequent treatment to separate N-glycans from their protein conjugates may offer a potentially attractive avenue to purification of these glycans .Thus, N-glycans derived from bovine colostrum, which is exceptionally rich in N-glycosylated proteins ,may be a potent source of bioactive glycans to serve as prebiotic substrates. Extensive characterization of complex N-glycans derived from bovine milk proteins abundant in colostrum now shows that these N-glycans are highly selective for certain bacteria in the adult GI microbiome. The bacteria able to access these glycans are further restricted, relative to larger repeated polymers of less complex oligosaccharides which are limited to select Bifidobacterium species (e.g., Bifidobacterium longum subsp. infantis). Some strains of these species have been associated with diminished enteric inflammation and improved GI barrier function in humans ,Bovine colostrum is also a potential source of anti-infective glycans and recent work provides evidence for the anti-infective activity of oligosaccharides sourced from bovine colostrum against a highly invasive strain of C. jejuni .

Clinical Applications of Bovine Colostrum

Body Composition and Exercise Performance

The first study investigating the role of colostrum supplementation in exercise performance was completed in 1997 and showed marked improvements on explosive muscle power and increased concentration of immunoglobulins in serum .This finding is relevant given intense physical activity can suppress immunity several hours after training .Subsequent, well-controlled studies in comparison to whey protein concentrate have demonstrated significant improvements in lean body mass and weightlifting performance in athletic performance among male and female athletes speed in elite cyclists with dose-dependent effects and in runners for recovery .Duff et al.indicated that bovine colostrum supplementation (60 g/d of colostrum) on male and female older adults during resistance training is beneficial for increasing leg press strength and reducing bone resorption in comparison to whey protein complex supplementation. Improvement in the upper body strength, muscle thickness, lean tissue mass, and cognitive function were noted for colostrum supplemented group as well as whey protein treated group .Despite this progress, the exact mechanism behind these marked improvements is not fully elucidated. As human studies typically use whey protein with similar protein content, observed differences are unlikely to simply be a response to protein digestibility or amino acid supplementation. Given that bovine colostrum immune components are likely not providing passive immunity to the human, it is possible that bioactive compounds and/or their metabolites have a direct effect on the immune system .There is currently weak support for the potential for bovine colostrum supplementation to improve leukocyte function relating to adaptive immunity .While a 33% increase in saliva IgA was noted after supplementation of colostrum at 20 g/day for 2 weeks and a 79% increase in IgA in runners fed 12 g/day for 12 weeks was reported these results were not repeated in other studies .Further, colostrum supplementation diminished exercise-induced intestinal permeability which was replicated in in vitro culture models of intestinal epithelial cells .Considering the safety profile and generally positive past research from well-controlled studies, further research is warranted to understand the underlying mechanism and explain inter-individual variations and unexplored discrepancies between the growing number of studies on colostrum supplementation in regards to body composition and athletic performance.

READ MORE :  A MILK STORY OF A1 AND A2 MILK

NSAIDs Induced GI Inflammation and Permeability

Non-steroidal anti-inflammatory drugs (NSAIDs) are the most common prescribed medicine and used for the symptomatic treatment of acute pain, chronic inflammatory, and degenerative joint diseases .NSAIDs can cause gastric and intestinal damage such as peptic ulceration and injury to both the small and large intestine. Complications from NSAIDs use include increased intestinal permeability with protein and blood loss, and also stricture formation .Approximately 2% of subjects taking NSAIDs experience adverse effects on the GI tract including bleeding, perforation, and inflammation. Acid suppressants and prostaglandin analogs are used to reduce gastric injury induced by NSAIDs, but these are not adequately effective in preventing small intestine injury. Hence, additional avenues for the mitigation of these negative side effects are needed. Some research suggests that colostrum may be an alternative, owing to the composition of growth factors like α-IGF-1, β-IGF-1, transforming growth factor (TGF), and epidermal growth factors (EGF). These growth factors are capable of stimulating the repair process of the GI tract and are complementary to evidence supporting diminished GI permeability associated with exercise .

In a clinical examination of bovine colostrum for protection against NSAID-induced enteropathy, seven male volunteers (26–38 years old) who were taking NSAIDs or suffering from conditions likely to affect intestinal permeability (e.g., coeliac disease or previous intestinal surgery), were evaluated for the potential of bovine colostrum to alter intestinal permeability with concomitant indomethacin supplementation. In this crossover study, following an initial baseline permeability assessment, these volunteers were supplemented orally with 125 mL of bovine colostrum or a whey placebo three times daily for seven days. At the end of the trial period, intestinal permeability was reassessed and a 2-week “washout” period was performed between the crossover. Approximately a 3-fold increase in permeability was observed in the participants taking the whey placebo with indomethacin, while no significant increase in permeability was seen in the participants taking co-administration of bovine colostrum with indomethacin .In support of these findings, molecular characterization of the mechanism underlying these effects have been documented. Mir et al demonstrated that bovine lactoferrin can act as a carrier for NSAIDs by binding to these molecules, but with far lower affinity than the protein targets for NSAIDs which suggests that the efficacy of NSAIDs may not be affected by co-administration of a lactoferrin-containing protein source, like bovine colostrum .While further studies will be required to demonstrate that these compounds, when co-administered with bovine colostrum, maintain their desired efficacy, there is growing and consistent evidence supporting the potential for the use of bovine colostrum to manage the potential side effects of NSAIDs.

Uses of Bovine Colostrum in Specific Clinical Populations

Bovine colostrum has led to human supplementation trials due to potential for improvement of GI health and integrity. Several conditions related to GI conditions associated with chronic or acute infections have been investigated for the potential of bovine colostrum to ameliorate symptoms associated with these conditions or infections. While the mechanisms behind these findings are difficult to disentangle given the disparate populations and disease etiologies, there are consistent themes related to the improvement of GI symptoms and reduced inflammation associated with each, though not all conditions demonstrate promising avenues for therapy.

Ulcerative Colitis

Ulcerative colitis, an inflammatory bowel disease associated with durable inflammation and ulcers in the colon was investigated as a potential target for a bovine colostrum enema treatment in a small proof-of-concept trial. The authors rationalized this approach given the high concentrations of antimicrobial peptides, immunoglobulins and growth factors found in colostrum .In this pilot study, fourteen patients with active mild to moderate colitis were compared. Eight patients received 100 mL (10% solution) of bovine colostrum and six patients received an albumin placebo twice per day for 4 weeks. Improvement of the symptom score including patient well-being, abdominal pain, rectal bleeding, temperature, anorexia/nausea, bowel frequency, stool consistency, abdominal tenderness and the presence of extra-intestinal manifestations was reported in seven of the eight patients in the bovine colostrum treated groups.While this study is small, the findings show a significant reduction in symptom scores and follow up studies in a similar population with a larger sample size may be warranted.

Necrotizing Enterocolitis

Necrotizing enterocolisis (NEC) is one of the most common morbidities associated with preterm birth, and among the chief causes of mortality among infants born preterm .Several studies have examined the impact of either human or bovine-derived colostrum on NEC outcomes and development of preterm infants. In one clinical trial of 86 low birthweight infants supplemented with bovine colostrum in a dose of 2 g, four times per day for infants between 1,000 and 1,500 g and 1.2 g, four times per day for those under 1,000 g at birth. No significant differences were observed in the occurrence of NEC, sepsis, or mortality after the administration of bovine colostrum as compared with placebo .In a meta-analysis examining the use of bovine and human colostrum among preterm infants, Sadeghirad et al. concluded that the cumulative findings in the literature suggest that neither human nor bovine colostrum had an effect on the incidence of severe NEC, mortality, culture-proven sepsis, feed intolerance, or length .The lack of effects is observed on NEC patients due to some limitations such as using commercial bovine colostrum supplement and number of patients is modest.Given these findings, it will be difficult to rationalize continued use of bovine or human colostrum with preterm infants for improvements in these outcomes. However, the use of human colostrum in preterm infants should not be curtailed based on these outcomes as other benefits have been demonstrated for preterm infants .

Traveler’s Diarrhea

Acute infection with enterotoxigenic Escherichia coli (ETEC) represents the most common causes of so-called Traveler’s Diarrhea, associated with travel to tropic and semitropical regions throughout the world ,As bovine colostrum plays a key role in protecting the neonatal calf from environmental pathogens via passive immunity and ETEC represents one of the primary causative agents of neonatal calf diarrhea ,researchers have been interested in determining whether the same effects can be demonstrated in humans at risk of Traveler’s Diarrhea.

Using hyperimmune bovine colostrum which is rich in immunoglobulins targeting 14 strains of ETEC, the efficacy and dose response of consuming bovine colostrum in a tablet form (400 mg of bovine colostrum protein) demonstrated a dose-dependent and significant improvement in protecting against the development of diarrhea among volunteers in a double blinded, placebo-controlled ETEC challenge study. A 400 mg serving of hyperimmune bovine colostrum protein administered with a bicarbonate buffer three times daily conferred 90.9% protection when compared to the placebo .Bicarbonate buffer contributes to the enhancement the protective effects of hyperimmune colostrum protein in the ETEC challenge experiments, but the difference was not statistically significant. As little as 200 mg consumed three times per day without buffer gave an estimated 58.3% protection from diarrhea symptoms, compared to the placebo group .

In addition to ETEC, viruses contribute to a significant proportion of both neonatal calf diarrhea and Traveler’s Diarrhea .In a double blinded, placebo-controlled study, Mitra et al., reported that consuming three daily servings of 100 mL of hyperimmune bovine colostrum targeting human rotavirus for 3 days conferred a modest but significant reduction in both the duration of diarrhea and the total stool output among male infants 6–24 months of age .Similarly, another study reported that purified immunoglobulins from hyperimmune bovine colostrum conferred a similar effect in acute rotavirus infection, supporting these findings .

While neither study examined the impact of colostrum from cows which had not been immunized against the target pathogen, a clinical trial examining the differences between hyperimmune bovine colostrum and bovine colostrum among children infected with shigellosis caused by Shigella dysenteriae (S. dysenteriae) failed to find any improvements among patients relative to the concurrent antibiotic therapy. However, preclinical studies in other biomedical models (e.g., gnotobiotic pigs) have shown promise for hyperimmune bovine colostrum in preventing diarrhea caused by Clostridioides difficile (C. difficile). Together, these findings may suggest that infectious mechanisms of pathogenesis shape the ability of hyperimmune bovine colostrum to influence disease progression as S. dysenteriae invades epithelial cells potentially evading hyperimmune bovine colostrum immunoglobulins, while ETEC and C. difficile utilize secreted toxins to induce epithelial damage

Benefits of Colostrum in human

Due to its great bioactive component concentration due to its value in body development by growth factors, colostrum is an immunity booster and a food supplement(Godhia ML. et al., 2013). However, the researchers and the food industry have a moral duty to protect consumers from misinformation and false claims(Siddhi Bagwe. et al., 2015). Historically, India uses bovine colostrum since its domestication and has utilized it in medical and spiritual rituals(Agarwal P et al., 2016). The colostrum can be used as a medicine against influenza in older adult patients(Conte, F. et al., 2013). The eyes were irrigated with bovine colostrum during ocular surgeries, as mentioned in Ayurveda’s ancient Indian medicine (Buttar, H. S et al., 2017). Since the 18th century, colostrum is being used in the medicinal form in Western World also. Colostrum was useful in the fight against bacterial diseases until the development of penicillin. No doubt, bovine colostrum is too helpful for human health. Still, bovine colostrum is unutilized entirely due to lack of cooling storage facilities, oxidation sensitivity and lipid components (Struff, W. G., & Sprotte, G. 2007). BC helps improve the immune system, intestinal flora balance, and tissue regeneration due to the presence of various bioactive compounds (Kabała-Dzik, A. et al., 2017). Also, bovine colostrum is helpful in some therapeutic processes of cardiovascular diseases, allergies, autoimmune diseases. It presents beneficial actions against bleeding, decreased flow, and ischemia resulting from certain drugs (Bagwe, S., 2015). Due to bioactive components in bovine, colostrum can neutralize the endotoxins in the gastrointestinal tract, decrease intestinal inflammation, and help repair tissue lesions (Saad, K. et al., 2016). As preterm newborns have a reduced digestive function, low bacterial colonization, and a dysregulated immune system, colostrum is beneficial in them(Sty, A. C. et al., 2016).

Benefits in GI Disorders

GI tract contains lots of microbiological organisms, antigens, food ingredients. These can act directly on the gut by the immunological process stimulation. Colostrum has immunological factors that protect against microorganisms. Colostrum contains trypsin inhibitors, and the whole colostrum goes down the GI tract and maintains the healthy epithelium linings and immune system. This way, colostrum protects against GI disorders (F. O. Kaducu et al., 2011). The hyperimmune bovine colostrum produced against a particular infection is very specific to the tract and prevents the infection host (Claes-Henrik Flore ´N. et al., 2006). Non-steroidal anti-inflammatory drugs (NSAIDs) can cause gastric gut ulceration. It affects the gut and causes increased permeability with protein and blood loss and rarely stricture formation. Acid suppressants and prostaglandin analogues are usually effective in reducing gastric injury induced by NSAIDs but are less effective in preventing small intestinal damage. Therefore, novel therapies are essential for this. The human and bovine colostrum consist of various growth factors like α IGF 1, β IGF 1, and transforming growth factor (TGF). These growth factors stimulate gut repair and result in gut growth. Bovine colostrum is useful to control the side effects of NSAIDs on GI mucosa. Bovine colostrum containing a protein content of approximately 43%, helps prevent NSAIDS induced GI dysfunction (Antonius C.M. et al., 2000).

Autoimmune Disease/ Leaky Gut Syndrome (Aldredge DL et al., 2013)

Over-reaction of an immune system and mistakenly attacks on own body tissues can cause the autoimmune disorder. These disorders can disturb one organ in the body (organ-specific), or multiple organs or systems may be affected (non-organ specific). Leaky gut syndrome, also known as bowel (intestinal) permeability, is an ailment in which the intestines’ lining is more permeable than usual. In leaky gut syndrome, there are large pores or spaces between the cells of the intestinal wall. This damaged intestinal barrier means compromised immunity since infectious pathogens (including bacteria, viruses, yeasts, and fungi), as well as allergens, can transfer through these enlarged holes within the intestinal wall and cause infection in the body. As the damaged intestinal wall pours more and more of these substances into the body, autoantibodies are made by the body, and thus inflammation becomes chronic. Such autoimmune disease that can develop depends on the chronic inflammation’s location, deciding the site of autoimmune disease. For example, inflammation that disturbs a joint can result in rheumatoid arthritis, and when it involves the blood vessels, vasculitis may occur. It is becoming apparent in recent research that there is a relationship between gastrointestinal health and autoimmune diseases. Colostrum is full of immunoglobulins and lactoferrin (immune factors), regulating the immune response, repair damaged cells, and reducing inflammation, a characteristic of autoimmune disorders. Colostrum contains proline-rich peptides (PRPs), also known as Colostrinin, a potent immune modulator that can slow the intense immune response in autoimmune diseases. It acts by stopping the overproduction of lymphocytes and stimulating the production of helper and suppressor T cells. Lactoferrin restores the humoral immune response, an immune response mediated by T and B cells. Leaky gut syndrome has a significant negative role in autoimmune diseases like lupus, rheumatoid arthritis, multiple sclerosis, diabetes, fibromyalgia, scleroderma, etc. Approximately 70% of the population has it. Suppose we consume substances that damage the intestinal lining due to antibiotics, steroids, soft drinks, alcohol, NSAIDs or alcohol, chemical hardeners used in canned foods, wheat proteins that contain gluten, or refined foods. There are high chances for some degree of the leaky gut syndrome, as shown in Fig-2.

READ MORE :  TREATMENT THERAPY & MANAGEMENT FOR " BLOOD IN MILK" CONDITION IN POST PARTUM DAIRY COWS

Immune deficiency and diarrhoea

Diarrhoea is well-defined as the condition of having three or more loose or liquid stools per day. It is due to infection and malfunction in the gut mucosa with increased permeability. The common cause of diarrhoea is bacteria, viruses, microbes, or other enteric pathogens. As severe diarrhoea results in dehydration and malnutrition so, they are the primary threat to human diseases. Whenever there is a breach in the mucosal integrity, diarrhoea can be part of several other conditions (WHO 2017). Bovine colostrum is an essential dietary supplement to help in the improvement of Diarrhoea (Playford, R. J. et al., 2000, Kelly, G. S.2003, Struff, W. G. et al., 2008, Elfstrand, L. et al., 2010, Feasey, N. A et al., 2011, Marchbank, T et al., 2011, Rathe, M. et al., 2014). This action is due to various bioactive factors like immunological, antibacterial, -viral, and –microbial in colostrum(Pakkanen, R. et al., 1997). Bovine colostrum is reasonably effective against bacterial gastrointestinal infections, oral infections, viral infections, cryptosporidium infections (Korhonen H et al., 2000). Chronic diarrhoea is due to immune deficiency syndromes due to the enteric pathogen Cryptosporidium parvum, and this diarrhoea benefits from the intake of bovine colostrum. Supplementation decreases stool frequency and increased stool volume. Also, in some immune-compromised persons, supplementation resulted in the complete resolution of previously non-responsive Diarrhoea (Playford, R. J. et al., 2000, Kelly, G. S.2003). HIV infections lead to loss of CD4+ cells from the gut mucosa, compromising its epithelial barrier function, thereby enabling microbial translocation, resulting in gastrointestinal and systemic immune activation and diarrhoea. HIV-associated diarrhoea thus, not only results in discomfort, dehydration, and malnutrition but may also affect the patients’ immunological and inflammatory status (Rathe, M. et al., 2014). BC is useful in patients infected by HIV who often suffer from chronic Diarrhoea (Rump, J. A 1992). This is due to direct colostrum effects on antimicrobial and endotoxin neutralizing effects by suppressing gut inflammation and promoting mucosal integrity and tissue repair (Elfstrand, L. et al., 2010, Feasey, N. A et al., 2011). Bovine colostrum is beneficial against diarrhoea in immune-compromised individuals, such as AIDS patients (Korhonen H, 2000; Kelly, G. S, 2003). BC helps lower the daily stool frequency and normalize the gut for a long time (Rump, J. A. et al., 1992). In pediatric patients with bloody diarrhoea, oral colostrum reduces stool frequency and improves life quality (Fernandez, L. B. et al., 1973). When antibiotics fail to control diarrhoea, bovine colostrum is a safe therapy (Korhonen H et al., 2000, Struff, W. G. et al., 2008, Thapa, B. R., 2005). Athlete’s diarrhoea” is caused by the combination of extreme physical stress and increased body temperature(Lambert, G. P. 2008), and gut permeability may increase as much as two- to threefold during intensive training. Therapy with BC stabilizes the gut, controls gut permeability, and reduces diarrhoea’s tendency to significantly counteract this (Marchbank, T et al., 2011).

Colostrum Anticancer

Role The milk-derived bioactive peptides include antithrombotic, antihypertensive, immunomodulating, antioxidative, mineral carrying, antimicrobial, anticancer, and growth-promoting properties. The conjugated linolenic acid (CLA) in colostrum has shown anticancer properties in breast cancer cells. As BC either inhibits the cyclooxygenase-2 pathway or the lipo-oxygenase pathway or induces the expression of apoptotic genes, it possesses the anticarcinogenic property of CLA in the mammary glands of females. It reduces immunosuppressive substances like leukotrienes and prostaglandins. CLA also inhibits carcinogens by inducing apoptosis through a mechanism that involves the inhibition of eicosanoid synthesis, as shown in Fig-3 (Agarwal P. et al., 2016). 

Utility in Preterm Baby

Preterm newborns need extra nutrition and immune protection compared to full-term newborns. Surprisingly, the preterm mother’s milk has high quantity proteins and higher amounts of many immunobiological factors, such as cytokines, growth factors, TGF-β2, and SIgA. As lymphoid tissues of the oropharynx can absorb the immunoprotective components of the maternal colostrum, this route can be used to treat premature neonates. This factor imitates the bioprotective function of amniotic fluid in extrauterine life (Camilla da Cruz Martins et al.,2020; Garofalo NA et al., 2019).

As a nutraceuticals

Nutraceuticals or functional foods are defined as substances that help in enhancing overall health and defend against non-communicable diseases. Usually, nutraceuticals are products that are isolated or extracted from fruits and dairy products. These are sold in the market as health supplements as non-pharmacological products and do not require doctors prescription. These are mostly cost-effective, reasonably priced substitute treatments for controlling and managing musculoskeletal abnormalities, diabetes, obesity, and some cancers. Being non-pharmacological, these are not prescribed by allopathic physicians. However, these are not scientifically proved supplements for various diseases as there are no evidence-based studies with a limited number of randomized, placebo-controlled studies and unresolved controversy about the role of nutraceuticals in treating noncommunicable diseases. So, manufacturers should produce these functional foods (colostrum) under good manufacturing practices (GMPs) and high-quality control standards. Post-sale scrutiny should be conducted carefully for the tolerability of BC supplements and bioactive components. Hygienic conditions should be used by dairy farmers and manufacturers while collecting and producing BC. BC contains a higher amount of immunoglobulins than human colostrum; it can treat immunodeficiency diseases and infections along with conventional medicines (Bagwe S, 2015; Butter HS, 2017; Siddhi Bagwe Parab, 2020).

 

Utility for Athletes

 

Colostrum is the most important natural substance (growth Factors-GF), helping professional athletes attain their wanted results in games. BC colostrum enhances strength and stamina, builds lean muscle mass, burns body fat, and boosts immune function, usually decreasing after strenuous exercise. BC shortens recovery time and thus accelerates the healing of injuries in athletes. Colostrum contains the growth factors that help in building lean muscle. Colostrum contains many GFs, including insulin-like growth factors (IGF-I & IGF-II) and growth hormone (GH); IGF-Iis the only natural hormone capable of helping muscle growth by itself. The IGFs in humans and cows are equal. Still, bovine colostrum contains a greater concentration of IGF-I than human colostrum. Thus, bovine colostrum is useful to bodybuilders, athletes, and others interested in mass muscle gain. Protein synthesis is induced by IGF-1, resulting in increased lean muscle mass without a corresponding increase in fat tissue as GF helps shift fuel utilization on fat instead of carbohydrates. Thus, the body burns fat to produce fuel more efficiently, including fat produced by consuming carbohydrates and protein (Schwade, S 1992). The IGF-1 in the colostrum increases blood glucose uptake and facilitates glucose transport to the muscles to maintain energy levels. Together with growth hormones, IGF-1 slows down the protein breakdown due to a vigorous workout. It speeds up protein synthesis, which forms lean muscle mass without fat addition to the body. A last-minute illness is a real fear for athletes, and colostrum seems to give the immune system a boost that can reduce such risk of a last-minute breakdown in athletes. Colostrum improves the integration of nutrients, enhances energy levels in the body, and thus improve performance. Also, colostrum’s immune factors help athletes minimize their susceptibility to infections, thus keeping up with their training schedules. IGF 1 in bovine colostrum is structurally identical to that found in humans (Lambert, G. P. 2008). Since IGF 1 has an anabolic effect and is useful in the monitoring feedback of growth hormone. When athletes are in an intense training period, many athletes develop gut problems – runner diarrhoea caused by

stress and raising their body’s core temperature by about two degrees, which seems to increase gut permeability. There is a tendency to leakiness rises 2- 3fold during intense training like the Olympics. However, bovine colostrum supplements prevent gut leakiness if consumed by athletes for two weeks before exercise. This is possible due to the growth factor present in the colostrum. It strengthens the gut lining (Raymond J Playford et al., 2000). The platelet-derived growth factor (PDGF) present in colostrum stimulates other growth factors, including IGF-1. The growth hormone (GH) present in the colostrum accelerates bone regeneration. TGF α and TGF β control cellular migration, proliferation, and fibroblast growth factor (FGF) and act as potent stimulators of angiogenesis and regulator of cellular migration and proliferation. Cytokines in bovine colostrum are useful in tendon repair as they accelerate tendon tissue growth (Jolanta Artym et al., 2004, Michelle Chen et al., 2008, Macdonald, Helen B 2000)

BC Safety in Human

Based on the recent literature, BC supplementation is considered well-tolerated and safe for the human population. Reported side effects include only mild complaints, like nausea, Diarrhoea, flatulence, unpleasant taste, abdominal discomfort, which may disappear with time. Unfortunately, there is no existing data for the long-term use of BC to make any conclusions. The dietary benefits of colostrum are a boon for human immunity. As reviewed, colostrum can be used to maintain the integrity of GI mucosa, the permeability of gut mucosa, local immunity, systemic immunity, and antigen handling. Colostrum supplements can play an essential role in autoimmune disorders like rheumatoid arthritis. As an immune modulator, BC has the scope in maintenances of growth in children due to growth factors. However, further research is needed for a recommendation for clinical use in human beings. Research is required for dosages, frequency etc. A systematic review and metaanalysis have shown that immunity enhancement may occur through other mechanisms, which are unclear and should be investigated further with more specific and clinically significant biomarkers.

Bovine colostrum: an emerging nutraceutical

Nutraceutical, a term combining the words “nutrition” and “pharmaceuticals”, is a food or food product that provides health benefits as an adjuvant or alternative therapy, including the treatment and prevention of infectious diseases in children and adults. There is emerging evidence that bovine colostrum (BC) may be one of the promising nutraceuticals which can prevent or mitigate various diseases in newborns and adults. Immunity-related disorders are one of the leading causes of mortality in the world. BC is rich in immunity, growth and antimicrobial factors, which promote tissue growth and the maturation of digestive tract and immune function in neonatal animals and humans. The immunoglobulins and lactoferrin present in cow colostrum are known to build natural immunity in newborns which helps to reduce the mortality rate in this population. Also, the side-effect profile of colostrum proteins and possible lactose intolerance is relatively less in comparison with milk. In general, BC is considered safe and well tolerated. Since colostrum has several important nutritional constituents, well-designed, double-blind, placebo-controlled studies with colostrum products should be conducted to widen its therapeutic use. The objectives of this review are to create awareness about the nutraceutical properties of colostrum and to discuss the various ongoing alternative treatments of colostrum and its active ingredients as well as to address colostrum future nutraceutical and therapeutic implications in humans.

The benefits of bovine colostrum may seem to be as beneficial as the human colostrum, to adults. But the human colostrum is the one much more effective to the humans than any other colostrum.

Every individual’s diet differs from the other. All kinds of diet can not benefit an individual everytime. You must understand your body’s requirements and choose your diet plan wisely. Any supplement will not benefit you as well as your body until and unless you maintain a good and healthy diet plan. When you embrace a healthy diet you can surely relish the benefits of consuming the bovine colostrum powder benefits as a supplement.

Taking the bovine colostrum as a supplement is completely your choice. But pregnant women and lactating women can avoid taking it. If not, consult your doctor before hand. As mentioned above that there are more number of studies to be done and prove its benefits officially. You can take suggestions from your doctor before you start taking it as a supplement on a daily basis. It is better you prefer taking colostrum powder from a A2 grass fed cow as the quality of the colostrum also depends on the environment in which the cow has been growing.

 

https://www.pashudhanpraharee.com/advances-in-bovine-colostrum-biology/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255475/

PHOTO COURTESY-sureshfoods.

Please follow and like us:
Follow by Email
Twitter

Visit Us
Follow Me
YOUTUBE

YOUTUBE
PINTEREST
LINKEDIN

Share
INSTAGRAM
SOCIALICON