Use Of Laboratory Animals In Drug Designing And Potency Testing

0
614

Use Of Laboratory Animals In Drug Designing And Potency Testing

(Dr.Amrita Behera,Ph.D Scholar, Indian Veterinary Research Institute, Izatnagar, Dr. Deepak Sakhre, Livestock Development Officer, Maharashtra)

 

Introduction

The use of animals for  conducting  various  scientific investigations  can been  traced  back  to ancient  history.    For    example,    the  reports  and  writings  of  Aristotle  (384-322  B.C.)  and Erasitratus (304-258 B.C.) represent   that they had studied the details of   anatomy of various animals. Ancient period’s research and investigations   such as these were the beginning of study  of  the  basic  sciences  that  it    today  forms  the  foundations  for  a  new    era  of    drug development. Till the end of the last century, experiments and research using living animals were carried out on domestic or easily captured wild species. The choice of using only these animals was usually limited and based on availability.   But, while   approaching towards   the end of the 19th    century, the abstract and the general idea of the use of  laboratory animal has begun to emerge as an   deliberately chosen field   for its ingrained suitability for the purpose. The animals were  especially  bred  in  captivity  or  they were obtained from its environment not  merely    on    grounds  of  convenience  but  rather  for  its  usefulness  for  the    specific investigation at hand.

The observation of humans on  animals as objects of study intuitively started in prehistoric times. The first recorded attempt involving the use of live animals for research was by Ersistratis in Alexandria in  300 B.C.  The   investigations  by  animals  has entirely  made  this   possible  to  bring  the huge advances in drug development in this century. Several mechanisms ofaction and effects on specific organs  can  be  studied  by  using  in  vitro  techniques.  Nevertheless,  to  identify    unexpected exacerbated  effects  and  to  estimate  the  dosages  that  are  pharmacologically  active  without producing unwanted effects, invitro studies should  be conducted.

For  many  substances,  the  mechanism  of  action  will  be  the  similar  in  humans  and  other mammals. Therefore, quantitative rather than qualitative differences in response are most common.  Humans  in  many  cases  may  be  more  sensitive  to  some  drugs  than  certain laboratory animals but usually certain animal species are more sensitive than humans. For example,  the  mouse and cat are sensitive to atropine, and the dog  and  rabbit  can  tolerate atropine at doses 100 times higher than what humans can tolerate.   The theory of species differences  with  respect  to  sensitivity  can  be  elaborated  by  differences  in  metabolism, taking into account both quantitative and qualitative differences in their ability to detoxify drugs  and  also  their  differences  in  the  rates  of  absorption,  transport,  distribution,  and elimination  of  chemicals.  After  oral  administration,  absorption  in  laboratory  animals  is generally  considered  to  be  similar  to  that  in  humans,  although  there  are  quantitative differences  in  respect  to    some  compounds.  For  example,  species  differences  in  the absorption and action of some compounds are related to differences in the bacterial flora of the gastrointestinal tract. The distribution and depository/ storage of drugs are reasonably on a constant trend among mammalian species, although plasma binding tends to be more extensive in  humans  than  in  small  mammals.  Species  differences  in  response  to  drugs  appear  to  be related  mainly    to    rates  of  biotransformation,  which  are  generally  more  rapid  in  small laboratory animals than in humans.

 

Animal  experimentation  and  study  with  regard  to  drug  discovery,  development  and usage

While the initial screening of new compounds for pharmacologic activity was conducted some thirty years ago using whole animals , tissues and organs being isolated from animals. In today’s time,  majority of  initial  screening  and  testing  for  new  drugs  is  being  conducted  via  in  vitro including    the  techniques  of  biochemistry  and  molecular  biology.  Studies  are  initiated  in animals only after a new drug candidate has been identified in vitro. The sole aim   of animal studies  is  to  authenticate  the  pharmacological  activity  of  the  new  drug  and  identify  any unforseen pharmacologic activity and develop initial data based on the action of the drug in vivo.   The most suitable and   ideal approach would be to have an invivo screening program developed  to  allow  for  the  detection  of  distinct  profiles  of  activity  or  conglomeration of activities.

READ MORE :  Dr.Sohan Singh Rathore Best Equine Practitioners Award 2020

 

(l) Role of animal experimentation in the design and development of drugs

Animal experimentation has been particularly useful and rewarding as well once the cause of a a particular disease has been established and when the disease can be easily reproduced in small animal  species. Under such  circumstances,  the  experimental  pharmacologists  can  establish  a reliable  screening  procedure  which  will  permit  a  team  of  investigators,  trained  in  several disciplines, to search for agents to either prevent or cure the diseases. Animals are now being used in   development of chemotherapy and infectious diseases. In 1935, Domagk’, announced the discovery of prontosil working with experimental streptococcal infections in mice, the first of  a  number  of  an  outstanding  and  remarkable  sulfonamides  and  the  other  synthetic  drugs, useful  in  the  cure  and  prevention  of  bacterial  infections  in  humans  and  animals.  In  today’s time,  the  use  of  sulfonamide  carry  on  to  be  very  valuable  in  the  management  of  certain bacterial  and  viral  infections.  There  are  a  plethora  of  known  antibiotics  which  are  useful clinically. Among them, the most broadly used are penicillin and its derivatives, streptomycin. aureomycin,  ,tetracycline,  erythromycin,  achromycin,    chloromycin,  bacitracin,  polymyxin, griseofulvin, nystatin and amphotericin B. All of these antibiotics were discovered and made available by the combined  use of in vitro and in vivo screening procedures designed to detect agents which would inhibit the growth or kill the ill microorganisms. Mice those were infected with various gram-positive and gram-negative bacteria were used for the in vivo experiments. The wide expanding list of infectious diseases of animals and humans, which have resulted in the discovery of the sulfonamides, other antibacterial synthetic agents and to the antibiotics, is quite  very long.  This  particularly  includes  tuberculosis,  leprosy  and  syphillis,  these  diseases have been the misfortune of mankind for thousands of centuries. But still, much experimental and  ground  work  is  there  to  be  done  in  the  area  of  chemotherapy  of  viral  diseases  and  the recent animal experiments dealing with interferon.

The  new  drugs  such  as   thiobendazole,  which  is  a  highly  effective,   broad  spectrum anthelmintic  has  been  developed  which  is    now  used  in  wide  scale  to  treat  and  cure  the infections.  As,  it  is  not  possible    to  culture  these  organisms  in  vitro,  the  use  of    infected experimental  animal  has  been  the  sole  choice   available  to  search  for  the  drugs  which  can control  this  disease.     Few  similar  examples  can   be  traced  with  animal  screening  and experimental  programs  which  give  way  to  drugs  now  currently  used  in  the  treatment  of trypanosomiasis amebiasis, schistosomiasis leishmaniasis, filariasis and tapeworms.

The use of animal experimental models which have been developed, have allowed scientists to  search  and  find  drugs  highly useful  for  the  symptomatic  treatment  of  diseases  of  allergic origin.  Compounds  were  found  which  protected  guinea  pigs  against  several  lethal  doses  of histamine.  Moreover,  these  compounds  lessened  the  symptoms  of  anaphylactic  shock by inducing   spasms   of   various   smooth   muscles.   Therefore,   a   group   of   drugs   known   as antihistamines were developed as a result of such animal experimentation. and  tend to  have significantvalue in the symptomatic treatment of various allergic diseases.

 

(2).Role  of  animal  experiinentatinn  in  the  development  of  drugs  useful  in  diseases  of unknown efficacy.

Animal  experimentation  played  an  important  role  in  developing  drugs  for  the  systematic treatment   of   diabetes,   rheumatic   fever,   hypertension,   addisons   disease   etc.   Animal investigations concerned  with the chemothernpy of cancer; certain diseases of central nervous system,  such  as  multiple  sclerosis  and  psychoses  and  others,  continue  to  receive  huge  and enormous attention.

READ MORE :  CONCEPT OF TELEPATHY OR ANIMAL COMMUNICATION & ITS IMPORTANCE

 

(3). Animal experimentation useful in regulating organ function

In  recent  times,  animal  investigations  have  occupied  an  imperative  position  in  the  design  and development  or  drugs  which  stimulate  or  depress  specific  physiologic  activities  of  normal humans   and   animals.   The   most   important   and   striking   example   of   this   wide   area   of pharmacological  research  are  the  animal  investigations  leading  to  the  development  of  drugs which regulates and controls ovulation.

 

(4). Animal experimentation useful in drug safety testing.

Before any new drug being given to people for its use for the very first time, it must be tested in animals  to  determine  the  concerned  side  effects  and  the  dose  at  which  these  side  effects  will appear. This testing has to be done in vivo because of the effects of the processes of   absorption, distribution,      metabolism,  excretion  etc.  The  various  interactions  among  these  processes  and the  subsequent  interactions  among the  various  organs  and  neuroendocrine  systems  within  the entire animal cannot be duplicated in vitro. It is therefore very necessary to give much higher dosages than the usual doses that would be given clinically and sometimes given for its use over prolonged periods of time to characterize the nature of the side effects of the newly developed drug. This is because the dosages of drugs needed to elicit pharmacologic or toxicologic effects are often  higher  in  laboratory  animals  than  in  humans  and  because  the side  effects  of  drugs suitable for clinical use are usually provoked only by exacerbated dosages.

It is routine practice to test new drugs for safety in at least two species to ensure that the safety of a new drug has not been over predicted and that any potential side effects have not been overlooked. In most cases these will be a rodent and a non rodent species. The variety of animal tests and the length of the studies required for a new drug depends on the nature of the drug (pharmacologic  or  chemical  class),  the  intended  clinical  use  of  the  drug (for example, length  of  the  usual  course  of  treatment)  and  to  some  extent,  on  the  requirements  of  the countries in which the new drug will be registered for marketing. The following are various types of toxicity studies used for drug safety testing.

(i) Acute toxicology (ii)Subchronic and chronic toxicology (iii) Reproductive toxicology (iv) Muta- genicity (v) Carcinogenicity (vi) Primary irritation testing (vii) Antigeniciiy testing

 

Legislation on Animal Experimentation

To  assure  the  validity  and  reproductibility  of  little  results  obtained,  the  proper  care  of laboratory animals used in research is a basic requirement. Animals used in dmg research are subject  to  stringent  standards  of  care  beginning  with  the  animal  supplier.  For  the  most commonly used laboratory animals, these standards of care often apply for the entire life of the animal.

The National Institute of Health (NIH) requires that contractors who are using live vertebrate animals  in  projects  supported  by  NIH  follow  the  guidelines  prescribed  in  the “Guide”. The Public Health Service further requires the grant-seeking institutions either be accredited by the American  Association for Accreditation of  Laboratory Animal   Care (AAALAC)  or  have an institutional committee that reviews its animal facilities and practices for compliance with the “Guide”.

The overall objective of these legislations  and guidelines  is to  restrict  the use of  animals  in the  scientific  experiments.  However,   experiments   whose  aim  is  the  extension  of  new discovery  of   biological  knowledge  or   knowledge  useful  for   saving  and  increasing  the longevity of  life  or  reducing     suffering  will  be considered.  During  the  experiments,  where survival of the animals is expected, the procedure is  governed  by the pain condition which at most prohibits severe pain which is likely to endure.

READ MORE :  आज के परिवेश में गाय की, स्वदेशी नस्लों के संरक्षण, संवर्धन एवं सतत विकास का सशक्त माध्यम है गौशालाए

Use of Vaccines in Veterinary Medicine

The  clinical  development  of  vaccines  may  require  further  safety  tests  in  animals,  which  are broadly similar to those required for human medicines. The exact nature of these tests depends on the results of clinical trials.

Conclusion

There is a long history for the use of live animals as the subjects of research in science and medicine. And so is the history of those who have protested against  this practice. As many theories  and  practices  may have  developed  extensively,  but  the  ethical and social questions raised by experiments on animals remain unchanged. Animal experimentation has contributed greatly  to  the  welfare  and  development  of  man  and  all  other  animal  species.  Animal experimentation has played a major and important role in making drugs available to alleviate pain  and  other depressing signs  and  symptoms  of  disease.  The  control  of  parasitic  diseases have been attributed to use of animals experimentally. Some of the same drugs have reduced the  load  on  chronic  disease  hospitals  as  well,  while  still  others  greatly  decreased  the population of our mental institutions. Animalexperimentationhas therefore  provided ways and means to regulate the population size of the world and contributed to enhance our food supply and  make  available  nutrients  to  maintain  good  health.  India’s  Prevention  and  Cruelty  to Animals Act of 1960 is an act of faith on the part of civil society and at the same time it tacitly recognises the principle that animals may have to be used in experiments. It is therefore very necessary to have well-defined rules and guidelines which will safe guard the interest of the scientists,  the  animals  and  the  society  without  hampering  useful  biomedical  research.  The CPCSEA can invite reports from the institutional committees ftom time to time and conduct occasional  inspections  to  the  centers  to  ensure  that   animal  welfare  conditions  are properly observed.

References

 

1 Cohen B 1 & Loew F M, in Laboratory Animal Medicine, edited by I G Fox, B J Cohen and fi M Loex, (Academic Press. Orlando), 1984, 1.

Domagk G, Ein beitrag zur chemotherapie der bacteriellen

Feingold  D  S,  Aniimicrobial chemotherapeutic  agents:  the  naiure  of  their  action  and  selective  toxicity, New England I Med, 269 (1963) 900,957.

Robinson  H  J  & Gracssle  O E,  fn  vitro  and  in  rivo  studies  of  gramicidin, tyroihricin and tyrocidine. I Pharmacol Exy Ther. 76 (1942) 3I6.

Isaacs 1, Interferon as a factor in recovery from vinis infection, Proc boy Soc Med 55 (1962) 725.

Stoll N R, The wormy world. I Parasi(ol, 33 (1947) 1.

Cuckler A C  & Mezey  K C,  The therapeutic  efficacy of  thiabendazole for helminthic infections  in  man, Arzncimiirr/- Forsch, 16 (1966) 411.

Cockier A C, Ott W H, Cobb W R, Polin D & Stoerk H C. Biological studies in poultry, World’s Poultry

Congress Section Payers, 293 (1962).

Hooijmans, C. R., Rovers, M. M., de Vries, R. B. M., Leenaars, M., RitskesHoitinga, M., and Langendam, M. W. (2014).

SYRCLE’s risk of bias tool for animal studies. BMC Med Res Method 14, 43. doi:10.1186/1471-2288- 14-

43.

Howells, D. W., and Macleod, M. R. (2013). Evidence-based translational medicine. Stroke 44, 1466–71.

   Institute   for   Laboratory   Animal   Research,   National   Research   Council.   2011.   Guidance   for   the

Description of Animal Research in Scientific Publications.

The National Academies Press, Washington, DC. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., and Altman, D. G. (2010).

Improving  bioscience  research  reporting:  The  ARRIVE  guidelines  for  reporting  animal  research.  PloS Biol  8,  e1000412.  Kilkenny,  C.,  Parsons,  N.,  Kadyszewski,  E.,  Festing,  M.  F.,  Cuthill,  I.  C.,  Fry,  D., Hutton, J., and Altman, D. G. (2009).

Survey of the quality of experimental design, statistical analysis and reporting of research using animals.

PLoS One 4, e7824.

 

Please follow and like us:
Follow by Email
Twitter

Visit Us
Follow Me
YOUTUBE

YOUTUBE
PINTEREST
LINKEDIN

Share
INSTAGRAM
SOCIALICON